Normalization for Typed Lambda Calculi with Explicit Substitution

نویسنده

  • Eike Ritter
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterising Explicit Substitutions whichPreserve

Contrary to all expectations, the-calculus, the canonical simply-typed lambda-calculus with explicit substitutions, is not strongly normalising. This result has led to a proliferation of calculi with explicit substitutions. This paper shows that the reducibility method provides a general criterion when a calculus of explicit substitution is strongly normalising for all untyped lambda-terms that...

متن کامل

Principal Typings for Explicit Substitutions Calculi

Having principal typings (for short PT) is an important property of type systems. In simply typed systems, this property guarantees the possibility of a complete and terminating type inference mechanism. It is well-known that the simply typed λ-calculus has this property but recently J.B. Wells has introduced a system-independent definition of PT, which allows to prove that some type systems, e...

متن کامل

Calculi of Generalized beta-Reduction and Explicit Substitutions: The Type-Free and Simply Typed Versions

Extending the λ-calculus with either explicit substitution or generalized reduction has been the subject of extensive research recently, and still has many open problems. This paper is the first investigation into the properties of a calculus combining both generalized reduction and explicit substitutions. We present a calculus, λgs, that combines a calculus of explicit substitution, λs, and a ...

متن کامل

Strong Normalization of Explicit Substitutions via Cut Elimination in Proof Nets

In this paper, we show the correspondence existing between normalization in calculi with explicit substitution and cut elimination in sequent calculus for Linear Logic,via Proof Nets. This correspondence allows us to prove that a typed version of the λx-calculus [34, 5] is strongly normalizing, as well as of all the calculi that can be translated to it keeping normalization properties such as λ...

متن کامل

Explicit Substitutions for Contextual Type Theory

In this paper, we present an explicit substitution calculus which distinguishes between ordinary bound variables and meta-variables. Its typing discipline is derived from contextual modal type theory. We first present a dependently typed lambda calculus with explicit substitutions for ordinary variables and explicit meta-substitutions for meta-variables. We then present a weak head normalizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993